Computation and Modeling Assignment 21

Anton Perez

February 27, 2021

Problem 21-1

A uniform distribution on the interval $[3,7]$ is a probability distribution $p(x)$ that takes the following form for some constant k :

$$
p(x)= \begin{cases}k & x \in[3,7] \\ 0 & x \notin[3,7]\end{cases}
$$

It is also $\mathcal{U}[3,7]$. So, to say that $X \sim \mathcal{U}[3,7]$, is to say that $X \sim p$ for the function p shown above.

1. Find the value of k such that $p(x)$ is a valid probability distribution.

Solution:

$$
\begin{gathered}
\int_{-\infty}^{\infty} p(x) \mathrm{d} x=\int_{3}^{7} k \mathrm{~d} x=1 \\
\left.k x\right|_{3} ^{7}=1 \\
7 k-3 k=1 \\
4 k=1 \\
k=\frac{1}{4}
\end{gathered}
$$

2. Given that $X \sim \mathcal{U}[3,7]$, compute $E[X]$.

Solution:

$$
\begin{aligned}
\int_{-\infty}^{\infty} x p(x) \mathrm{d} x & =\int_{3}^{7} k x \mathrm{~d} x \\
& =\int_{3}^{7} \frac{1}{4} x \mathrm{~d} x \\
& =\left.\frac{x^{2}}{8}\right|_{3} ^{7} \\
& =\frac{49}{8}-\frac{9}{8} \\
& =5
\end{aligned}
$$

3. Given that $X \sim \mathcal{U}[3,7]$, compute $\operatorname{Var}[X]$.

Solution:

$$
\begin{aligned}
\int_{-\infty}^{\infty} p(x)(x-E[X])^{2} \mathrm{~d} x & =\int_{3}^{7} k(x-E[X])^{2} \mathrm{~d} x \\
& =\int_{3}^{7} \frac{1}{4}(x-5)^{2} \mathrm{~d} x \\
& =\left.\frac{(x-5)^{3}}{12}\right|_{3} ^{7} \\
& =\frac{2}{3}-\left(-\frac{2}{3}\right) \\
& =\frac{4}{3}
\end{aligned}
$$

