Machine Learning Assignment 44

Your Name

April 7, 2021

Solution

(a[a]) 6 favored outcomes (for 6 different X_{1} values) and 36 possible outcomes. We then have a probability of $\frac{1}{6}$.
(a[b]) 6 favored outcomes and 36 total outcomes. The final probability is then $\frac{1}{6}$
(a[c]) 15 favored outcomes and 36 total outcomes. The final probability is then $\frac{5}{12}$
(b[a]) Let x be $P(A \cap B)$

$$
\begin{aligned}
0.9 & =0.4-x+0.7-x+x \\
x & =0.2
\end{aligned}
$$

(b[b]) This is everything in B that isn't in A, which is $0.9-0.4=0.5$
(b[c]) This is everything in A that isn't in B, which is $0.9-0.7=0.2$
(b[d]) This is everything outside A and B, which would be $1-0.9=0.1$
(b[e]) This is everything outside of A with the exception of the intersection, which would be $0.7+0.1=0.8$
(b[f]) This is the intersection of A with everything that isn't in A with the exception of the intersection, so the intersection 0.2 if the probability
(c)

$$
\text { probability of getting } k \text { red balls }=\binom{20}{k} \cdot\left(\frac{3}{10}\right)^{k} \cdot\left(\frac{7}{10}\right)^{20-k}
$$

(d)

Figure 1: Cumulative Distribution Graph

