Machine Learning Assignment 46

Colby Roberts

September 30, 2020

47-1

Several witnesses reported seeing a UFO during the following time intervals:

$$
\text { data }=[[12,13],[12,13.5],[14,15],[14,16]]
$$

The times represent hours in military time:
12 is noon,
13 is 1 pm ,
13.5 is $1: 30 \mathrm{pm}$,

Suppose you want to quantify your certainty regarding when the UFO arrived and when it left.
Assume the data came from U[a,b], the uniform distribution on the interval [a,b]. This means the UFO arrived at time a and left at time b.

Solutions

(A) The likelihood function, $\mathcal{L}([a, b] \mid$ data $)$ is:

$$
\begin{aligned}
\mathcal{L}([a, b] \mid \text { data }) & =\frac{13-12}{b-a} \cdot \frac{13.5-12}{b-a} \cdot \frac{15-14}{b-a} \cdot \frac{16-14}{b-a} \\
& =\frac{(1) \cdot(1.5) \cdot(1) \cdot(2)}{(b-a)^{4}} \\
& =\frac{3}{(b-a)^{4}}
\end{aligned}
$$

(B) Normalization of the likelihood function, $\mathcal{L}([a, b] \mid$ data $)$ is:

$$
\begin{aligned}
\int_{b_{\min }}^{b_{\max }} \int_{a_{\min }}^{a_{\max }} c \cdot \mathcal{L}([a, b] \mid \text { data }) d a d b & =\int_{16} \int_{-}^{12} c \cdot \frac{3}{(b-a)^{4}} d a d b \\
& =\int_{16} c \cdot \frac{1}{(b-12)^{3}} d b \\
& =c \cdot\left(\frac{1}{32}\right. \\
& \Longrightarrow c \cdot \frac{1}{32}=1 \\
& \Longrightarrow c=32
\end{aligned}
$$

(C) the probability that the UFO came and left sometime during the day that it was sighted? In other words, the probability that $0<a<a_{\max }$ and $b_{\min }<b<24$ is:

$$
\begin{aligned}
\int_{16}^{24} \int_{0}^{12} c \cdot \mathcal{L}([a, b] \mid \text { data }) & =\int_{16}^{24} \int_{0}^{12} 32 \cdot \frac{3}{(b-a)^{4}} d a d b \\
& =96 \cdot \int_{16}^{24} \frac{1}{3(b-12)^{3}}-\frac{1}{3 b^{3}} d b \\
& =96 \cdot \frac{41}{4608} \\
& =\frac{41}{48}
\end{aligned}
$$

(D) the probability that the UFO arrived before 10am is:

$$
\begin{aligned}
\int_{16}^{24} \int_{0}^{12} c \cdot \mathcal{L}([a, b] \mid \text { data }) & =\int_{16}^{24} \int_{0}^{12} 32 \cdot \frac{3}{(b-a)^{4}} d a d b \\
& =32 \cdot \int_{16}^{24} \frac{1}{3(b-10)^{3}} d b \\
& =32 \cdot \frac{1}{72} \\
& =\frac{32}{72} \\
& =\frac{4}{9}
\end{aligned}
$$

