Machine Learning Assignment 49

Colby Roberts
October 7, 2020

49-1
(A) $E[a \cdot X]=a \cdot E[X]$

$$
\begin{aligned}
E[a \cdot X] & =\int_{\infty}^{\infty}(a \cdot x) \cdot p(x) d x \\
& =a \cdot \int_{\infty}^{\infty} x \cdot p(x) d x \\
& =a \cdot E[X]
\end{aligned}
$$

(B) $E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]$

$$
\begin{aligned}
E\left[X_{1}+X_{2}\right] & =\int_{\infty}^{\infty}\left(X_{1}+X_{2}\right) \cdot p(x) d x \\
& =\int_{\infty}^{\infty} X_{1} \cdot p(x)+X_{2} \cdot p(x) d x \\
& =\int_{\infty}^{\infty} X_{1} \cdot p(x)+\int_{\infty}^{\infty} X_{2} \cdot p(x) d x \\
& =E\left[X_{1}\right]+E\left[X_{2}\right]
\end{aligned}
$$

(C) $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}$

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(x-E[x])^{2}\right] \\
& =E[(X-E[X]) 2] \\
& =E\left[X^{2}-2 \cdot X \cdot E[X]+E[X]^{2}\right] \\
& =E\left[X^{2}\right]-2 \cdot E[X] \cdot E[X]+(E[X])^{2} \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

(D) Bisection Search of $\sqrt{5}$ to 4 decimal places.

Because $\sqrt{4}=2$ and $\sqrt{9}=3$ and since $4<5<9$ the initial bounds are [2,3], and the to find the $\sqrt{5}$ we have to make a function such that $f(\sqrt{5})=0$ and the function that fits this is $f(x)=x^{2}-5$, so we compute,

Bounds	Mid-Point	F(Mid-Point)	Estimation
$[2,2.5]$	2.5	1.25	2.25
$[2,2.25]$	2.25	0.0625	2.125
$[2.125,2.25]$	2.125	-0.484375	2.1875
$[2.1875,2.25]$	2.1875	-0.21484375	2.21875
$[2.21875,2.25]$	2.21875	-0.0771484375	2.234375
$[2.234375,2.25]$	2.234375	-0.007568359375	2.2421875
$[2.234375,2.2421875]$	2.2421875	0.02740478515625	2.23828125
$[2.234375,2.23828125]$	2.23828125	0.0099029541015625	2.236328125
$[2.234375,2.236338125]$	2.236328125	0.001163482666015625	2.2335515625
$[2.233551525,2.236328525]$	2.2353515625	-0.00032033920288085938	2.23583984375
$[2.23583984375,2.236328125]$	2.23583984375	-0.001020193099975586	2.236083984375

We know the $\sqrt{5}=2.23606798$ Using the final bounds the estimation $2.2360 \ldots$ and the first 4 decimal places of my Bisection search are the same as what we want. therefore I am done.
(E) Merge sort of $[4,8,7,7,4,2,3,1]$

Input list:[4, 8, 7, 7, 4, 2, 3, 1]
Break it in half: $[4,8,7,7],[4,2,3,1]$
Use Merge Sort recursively to sort the two halves
Input list: $[4,8,7,7]$
Break it in half: $[4,8],[7,7]$
Use Merge Sort recursively to sort the two halves
Input list: $[4,8]$
Break it in half: [4], [8]
The two halves have only one element each, so they are already sorted
So we can combine them to get $[4,8]$
Input list: [7,7]
Break it in half: [7], [7]
The two halves have only one element each, so they are already sorted
So we can combine them to get $[7,7]$
Now we have two sorted lists $[4,8]$ and $[7,7]$
So we can combine them to get [4, 7, 7, 8]
Input list: $[4,2,3,1]$
Break it in half: $[4,2],[3,1]$
Use Merge Sort recursively to sort the two halves
Input list: $[4,2]$
Break it in half: [4], [2]
The two halves have only one element each, so they are already sorted
So we can combine them to get $[2,4]$
Input list: [3, 1]
Break it in half: [3], [1]
The two halves have only one element each, so they are already sorted So we can combine them to get $[1,3]$
Now we have two sorted lists [2,4] and [1,3]
So we can combine them to get [1,2,3,4]
Now we have two sorted lists $[4,7,7,8]$ and $[1,2,3,4]$
So we can combine them to get $[1,2,3,4,4,7,7,8]$

49-2

Part 1 Bayesian inference with a uniform prior
(A) $\mathcal{L}(k \mid 1000$ successes $)$

$$
\mathcal{L}(k \mid 1000 \text { successes })=k \cdot k \cdot k \ldots 996 \text { times } \ldots \cdot k \quad=k^{1000}
$$

(B) Normalized $\mathcal{L}(k \mid 1000$ successes $)$

$$
\begin{aligned}
\mathcal{L}(k \mid 1000 \text { successes }) & =\int_{-\infty}^{\infty} c * \mathcal{L}(k \mid 1000 \text { successes }) d k \\
& =\int_{-\infty}^{\infty} c \cdot \mathcal{L}(k \mid 1000 \text { successes }) d k \\
& =\int_{-\infty}^{\infty} c \cdot k^{1000} d k \\
& =\int_{0}^{1} c \cdot k^{1000} d k \\
& =c \cdot\left(\frac{(1)^{1} 001}{1001}-\frac{(0)^{1} 001}{1001}\right) \\
& \Longrightarrow c \cdot \frac{1}{1001}=1 \\
& \Longrightarrow c=1001
\end{aligned}
$$

(C $P\left(\left.1-k^{500} \leq \frac{1}{10000} \right\rvert\, 1000\right.$ successes $)$

$$
\begin{aligned}
P\left(\left.1-k^{500} \leq \frac{1}{10000} \right\rvert\, 1000 \text { successes }\right) & =\int_{0.99999979999}^{1} 1001 k^{1000} d k \\
& =\left.k^{1001}\right|_{0.99999979999} ^{1} \\
& =1-0.999799810011 \\
& =0.000200189989
\end{aligned}
$$

Part 2 Updating by inspecting the posterior
(A) Number of successes for the posterior distribution $P(k \mid$? successes $)=5001 k^{5000}$ also the likelihood function is $\mathcal{L}(k \mid$? successes) so using this,

$$
\begin{aligned}
\mathcal{L}(k \mid ? \text { successes }) & =k \cdot k \cdot \ldots ? \text { times } \cdot k \\
& =k^{?} \\
& =k^{5000} \\
& \Longrightarrow ?=5000
\end{aligned}
$$

Therefore there are 5000 rolls.
(B) Normalized $\mathcal{L}(k \mid 7000$ successes $)$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathcal{L}(k \mid 7000 \text { successes }) d k & =\int_{-\infty}^{\infty} c \cdot k \cdot k \cdot k \ldots 6996 \text { times... } \cdot k d k \\
& =\int_{0}^{1} c \cdot k^{7000} d k \\
& =\left.c \cdot \frac{k^{7001}}{7001}\right|_{0} ^{1} \\
& \Longrightarrow c=7001
\end{aligned}
$$

Part 3 Bayesian updating
(A) Filling in the "2000 more successes" blanks
prior distribution: $P(k)=5001 k^{5000}$
likelihood: $P(2000$ more successes $\mid k)=2001 k^{2000}$
prior \cdot likelihood: $P(2000$ more successes $\mid k) \cdot p(k)=5001 k^{5000} \cdot 2001 k^{2000}=10007001 k^{7000}$
posterior distribution: $P(2000$ more successes $\mid k)=\int_{0}^{1} c \cdot 10007001 k^{7000} d k \Longrightarrow c \cdot \frac{10007001}{7001}=1$

$$
\Longrightarrow c=\frac{7001}{10007001} \Longrightarrow P(2000 \text { more successes } \mid k)=7001 k^{7000}
$$

Part 4 Inference
(A) Smallest N such that $P\left(\left.1-k^{500} \leq \frac{1}{10000} \right\rvert\, N\right.$ successes $)=0.99$

$$
\begin{aligned}
P\left(\left.1-k^{500} \leq \frac{1}{10000} \right\rvert\, N \text { successes }\right) & =\int_{0.99999979999}^{1}(N+1) k^{N} d k \\
& =\left.k^{N+1}\right|_{0.99999979999} ^{1} \\
& =1-0.99999979999^{N+1} \\
& \Longrightarrow 1-0.99999979999^{N+1}=0.99 \\
& \Longrightarrow 0.999999799999^{N+1}=0.01 \\
& \Longrightarrow N+1 \ln (0.99999979999)=\ln (0.01) \\
& \Longrightarrow N=\frac{\ln (0.01)}{\ln (0.99999979999)}-1 \\
& \Longrightarrow N=23024696.3916
\end{aligned}
$$

The amount of more successes after 5000 are $23024696.3916-5000=23019696.3916$

