Problem 49-1

David Gieselman

October 2020

A:
We wish to show that $E[a X]=a E[X]$

$$
E[a X]=\int_{a}^{b} a * x * p(x) d x
$$

Because a is a constant it can be taken out

$$
a * \int_{a}^{b} x * p(x) d x=a E[X]
$$

B:

$$
\begin{aligned}
& \quad E\left[X_{1}+X_{2}\right]=\int_{a}^{b}\left(x_{1}+x_{2}\right) * p(x) d x=\int_{a}^{b}\left(x_{1}\right) * p(x)+\left(x_{2}\right) * p(x) d x \\
& \int_{a}^{b}\left(x_{1}\right) * p(x)+\left(x_{2}\right) * p(x) d x=\int_{a}^{b}\left(x_{1}\right) * p(x) d x+\int_{a}^{b}\left(x_{2}\right) * p(x) d x=E\left[X_{1}\right]+E\left[X_{2}\right] \\
& \quad \mathrm{C}:
\end{aligned}
$$

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}-2 X E[X]+E[X]^{2}\right]
$$

Because the fact that $\mathrm{E}[\mathrm{X}]$ is a constant and because of B we know that:

$$
\left.E\left[X^{2}-2 X E[X]+E[X]^{2}\right]=E\left[X^{2}\right]-2 E[X] E[X]+E[X]^{2}\right]=E\left[X^{2}\right]+E[X]^{2}
$$

D:

$$
\begin{gathered}
x \mid x^{2} \\
2 \mid 4 \\
2.5 \mid 6.25 \\
2.25 \mid 5.0625
\end{gathered}
$$

```
2.235 | 4.995225
\(2.236 \mid 4.999696\)
```

```
E:
[4,8,7,7,4,2,3,1]
[4,8,7,7],[4,2,3,1]
[4,8],[7,7]
[4],[8] = [4,8]
[7],[7] =[7,7] combine [4,8],[7,7]=[4,7,7,8]
[4,2],[3,1]
[4],[2]=[2,4]
[3],[1] = [1,3]
combine [2,4],[1,3]= [1,2,3,4]
combine [4,7,7,8],[1,2,3,4]=[1,2,3,4,4,7,7,8]
[1,2,3,4,4,7,7,8]
```

