Problem 50-1

David Gieselman
October 2020

1 Given the data, compute the likelihood P (two rolls of 1 and three rolls of 2 -switch). Your work should lead to the following result:

$$
L(\text { two rolls of } 1 \text { and } 3 \text { rolls of } 2 \mid \text { switch })=
$$

$(5$ choose 2$) \cdot P($ roll of 1$) \cdot P($ roll of 1$) \cdot P($ roll of 2$) \cdot P($ roll of 2$) \cdot P($ roll of 2$)=$ We find the probability based on a fair die and when it is based on a die with 3 sides of 1 and 3 sides of 2 .

Fair Die:

$$
\begin{gathered}
L(\text { two rolls of } 1 \text { and } 3 \text { rolls of } 2 \mid \text { switch })=(5 C 2) \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}= \\
\frac{1}{6^{5}}=\frac{5!}{2!\cdot 3!} 0.0001286=0.001286
\end{gathered}
$$

Biased Die(3 sides of 1,3 sides of 2$)$:

$$
\begin{gathered}
L(\text { two rolls of } 1 \text { and } 3 \text { rolls of } 2 \mid \text { switch })=(5 C 2) \cdot \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6}=\frac{3^{5}}{6^{5}}= \\
\frac{5!}{2!\cdot 3!} 0.03125=0.3125
\end{gathered}
$$

$$
P(\text { two rolls of } 1 \text { and } 3 \text { rolls of } 2 \mid \text { switch })= \begin{cases}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{cases}
$$

Suppose that, before the magician rolled the die, you were agnostic: you believed there was a 50/50 chance that the die was fair.

a. Given your prior belief, what is the prior distribution P (switch)?

$$
P(\text { switch })= \begin{cases}0.5 & \text { switch }=\text { True } \\ 0.5 & \text { switch }=\text { False }\end{cases}
$$

b. What is the posterior distribution P (switch|two rolls of 1 and three rolls of 2$)$?

We know that $\mathrm{P}($ parameter \mid data $)=\propto \mathrm{P}($ data \mid parameter $) \cdot \mathrm{P}($ parameter $)$ by Bayes theorem. So $\mathrm{P}($ data|parameter $)=\mathrm{P}($ two rolls of 1 and three rolls of $2 \mid$ switch $)$ and $\mathrm{P}($ parameter $)=\mathrm{P}($ switch $)$.
$P($ switch \mid two rolls of 1 and 3 rolls of 2$) \propto P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $) \cdot P($ switch $)=$
$\left\{\begin{array}{ll}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{array} \cdot\left\{\begin{array}{ll}0.5 & \text { switch }=\text { True } \\ 0.5 & \text { switch }=\text { False }\end{array}= \begin{cases}0.15625 & \text { switch }=\text { True } \\ 0.000643 & \text { switch }=\text { False }\end{cases}\right.\right.$
It has to sum up to 1 so we solve

$$
c(0.15625+0.000643)=1 \rightarrow c=\frac{1}{0.156893}=6.37377
$$

So:
$P($ switch \mid two rolls of 1 and 3 rolls of 2$)= \begin{cases}0.15625 \cdot 6.37377=0.996 & \text { switch }=\text { True } \\ 0.000643 \cdot 6.37377=0.004, & \text { switch }=\text { False }\end{cases}$

Suppose that, before the magician rolled the die, you were optimistic: you believed there was a $\mathbf{9 9 \%}$ chance that the die was fair.

a. Given your prior belief, what is the prior distribution P (switch)?

$$
P(\text { switch })= \begin{cases}0.01 & \text { switch }=\text { True } \\ 0.99 & \text { switch }=\text { False }\end{cases}
$$

b. What is the posterior distribution P (switch|two rolls of 1 and three rolls of 2)?

Like in Part 1 we will find P (switch-two rolls of 1 and three rolls of 2)
$P($ switch \mid two rolls of 1 and 3 rolls of 2$) \propto P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $) \cdot P($ switch $)=$
$\left\{\begin{array}{ll}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{array} \cdot\left\{\begin{array}{ll}0.01 & \text { switch }=\text { True } \\ 0.99 & \text { switch }=\text { False }\end{array}= \begin{cases}0.003125 & \text { switch }=\text { True } \\ 0.00127314 & \text { switch }=\text { False }\end{cases}\right.\right.$
It has to sum up to 1 so we solve

$$
c(0.003125+0.00127314)=1 \rightarrow c=\frac{1}{0.00439814}=227.3688
$$

So:
$P($ switch \mid two rolls of 1 and 3 rolls of 2$)= \begin{cases}227.3688 * 0.003125=0.710, & \text { switch }=\text { True } \\ 227.3688 * 0.00127314=0.289, & \text { switch }=\text { False }\end{cases}$

Suppose that, before the magician rolled the die, you were pessimistic: you believed there was a 1% chance that the die was fair.

a. Given your prior belief, what is the prior distribution P (switch)?

$$
P(\text { switch })= \begin{cases}0.99 & \text { switch }=\text { True } \\ 0.01 & \text { switch }=\text { False }\end{cases}
$$

b. What is the posterior distribution P (switch-two rolls of 1 and three rolls of $2)$?

Again we find P (switch - two rolls of 1 and three rolls of 2)
$P($ switch \mid two rolls of 1 and 3 rolls of 2$) \propto P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $) \cdot P($ switch $)=$
$\left\{\begin{array}{ll}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{array} \cdot\left\{\begin{array}{ll}0.99 & \text { switch }=\text { True } \\ 0.01 & \text { switch }=\text { False }\end{array}= \begin{cases}0.309375 & \text { switch }=\text { True } \\ 0.00001286 & \text { switch }=\text { False }\end{cases}\right.\right.$
It has to sum up to 1 so we solve

$$
c(0.309375+0.00001286)=1 \rightarrow c=\frac{1}{0.30938786}=3.23
$$

So:
$P($ switch \mid two rolls of 1 and 3 rolls of 2$)= \begin{cases}3.232188 \cdot 0.309375=0.99996, & \text { switch }=\text { True } \\ 3.232188 \cdot 0.00001286=0.00004, & \text { switch }=\text { False }\end{cases}$

