Problem 60-1

David Gieseman
November 2020

$$
1 \quad 3 n^{2}+2 n+1=O\left(n^{2}\right)
$$

When we apply the first defenition of O we get $\lim _{x \rightarrow \infty} \frac{3 n^{2}+2 n+1}{n^{2}}$. You do L'Hospital's rule twice and you find that it converges to 3 .
$2 \quad O(f+g)=O(\max (f, g))$
$\mathrm{h}=\mathrm{O}(\mathrm{f}+\mathrm{g})$ so h
$3 \quad O(f * g)=O(f) * O(g)$

4 If $\mathrm{f}=\mathrm{O}(\mathrm{g})$ and $\mathrm{g}=\mathrm{O}(\mathrm{h})$ then $\mathrm{f}=\mathrm{O}(\mathrm{h})$

For some constant $\mathrm{k}, f(n)<c * g(n)<k * h(n)$ therefore $f(n))<k * h(n)$ and $\mathrm{f}=\mathrm{O}(\mathrm{h})$.

