Machine Learning Assignment 47

Elijah Tarr

February 24, 2021

Problem 1

(a) Compute the likelihood function $\mathcal{L}([a, b] \mid$ data $)$

$$
\begin{aligned}
\mathcal{L}([a, b] \mid \text { data }) & =\mathcal{L}([a, b] \mid[12,13],[12,13.5],[14,15],[14,16]) \\
& =\frac{13-12}{b-a} * \frac{13.5-12}{b-a} * \frac{15-14}{b-a} * \frac{16-14}{b-a} \\
& =\frac{3}{(b-a)^{4}}
\end{aligned}
$$

(b) Normalize the likelihood function so that it can be interpreted as a probability density.

$$
\int_{b_{\min }}^{b_{\max }} \int_{a_{\min }}^{a_{\max }} c * \mathcal{L}([a, b] \mid \text { data }) \mathrm{d} a \mathrm{~d} b
$$

The absolute earliest the UFO could have left is at 16, because that was the latest sight of it. The latest it could have arrived is at 12 , which is the earliest it was sighted. This means that $a_{\max }=12$ and $b_{\text {min }}=16$. We aren't sure when it arrived or left, and it isn't guaranteed that it arrived or left on that same day, so we can set the other bounds to infinity. We have $a_{\min }=-\infty$ and $b_{\max }=\infty$.

Therefore, we have

$$
\begin{aligned}
1 & =\int_{16}^{\infty} \int_{-\infty}^{12} c * \frac{3}{(b-a)^{4}} \mathrm{~d} a \mathrm{~d} b \\
& =c * \int_{16}^{\infty}-\left.\frac{1}{(b-a)^{3}}\right|_{-\infty} ^{12} \mathrm{~d} b \\
& =c * \int_{16}^{\infty}-\frac{1}{(b-12)^{3}} \mathrm{~d} b \\
& =-\left.c * \frac{1}{2(b-12)^{2}}\right|_{16} ^{\infty} \\
& =-c * \frac{-1}{32} \\
c & =32
\end{aligned}
$$

Now we can plug this into the probability density and get:

$$
p([a, b])=\frac{96}{(b-a)^{4}}
$$

(c) What is the probability that the UFO came and left sometime during the day that it was sighted? In other words, what is the probability that $0<a<a_{\max }$ and $b_{\text {min }}<b<24$?

$$
\begin{aligned}
\int_{16}^{24} \int_{0}^{12} \frac{96}{(b-a)^{4}} \mathrm{~d} a \mathrm{~d} b & \\
& =\left.\int_{16}^{24} \frac{32}{(b-a)^{3}}\right|_{0} ^{12} \mathrm{~d} b \\
& =\int_{16}^{24} \frac{32}{(b-12)^{3}}-\frac{32}{b^{3}} \mathrm{~d} b \\
& =\frac{16}{(b-12)^{2}}-\left.\frac{16}{b^{2}}\right|_{16} ^{24} \\
& =\frac{-5}{144}-\frac{-8}{9} \\
& =\frac{41}{48}
\end{aligned}
$$

(d) What is the probability that the UFO arrived before 10am?

$$
\begin{aligned}
\int_{16}^{\infty} \int_{-\infty}^{10} \frac{96}{(b-a)^{4}} \mathrm{~d} a \mathrm{~d} b & \\
& =\int_{16}^{\infty}-\left.\frac{32}{(b-a)^{3}}\right|_{-\infty} ^{10} \mathrm{~d} b \\
& =\int_{16}^{\infty}-\frac{32}{(b-10)^{3}} \mathrm{~d} b \\
& =-\left.\frac{16}{(b-10)^{2}}\right|_{16} ^{\infty} \\
& =\frac{16}{36}=\frac{4}{9}
\end{aligned}
$$

