
Machine Learning Assignment 49

Elijah Tarr

February 24, 2021

Problem 1

(a) Given that X ∼ p(x), where p(x) is a continuous distribution, prove that
for any real number a we have E[aX] = aE[X].

Since a is a constant, we can literally just take it out of the integral.

E[aX] =

∫ 1

0

(ax) ∗ P (x)dx

= a

∫ 1

0

x ∗ P (x)dx

= aE[X]

(b) Given that X1, X2 ∼ p(x), where p(x) is a continuous distribution, prove
that E[X1 +X2] = E[X1] + E[X2].

E[X1 +X2] =

∫ 1

0

(x1 + x2) ∗ p(x)dx

=

∫ 1

0

x1 ∗ p(x) + x2 ∗ p(x)dx

=

∫ 1

0

x1 ∗ p(x)dx+

∫ 1

0

x2 ∗ p(x)dx

= E[X1] + E[X2]

(c) Given that X ∼ p(x) where p(x) is a continuous probability distribution,
prove the identity V ar[X] = E[X2]− E[X]2.

1



V ar[X] = E[(X −X)2]dx

=

∫ 1

0

(x− E[X])2 ∗ p(x)dx

=

∫ 1

0

(x2 − 2xE[X] + E[X]2) ∗ p(x)dx

=

∫ 1

0

x2 ∗ p(x)dx+ E[X]

∫ 1

0

(E[X]− 2x) ∗ p(x)dx

= E[X2] + E[X](E[X]

∫ 1

0

p(x)dx− 2

∫ 1

0

x ∗ p(x)dx

= E[X2] + E[X](E[X]− 2E[X])

= E[X2]− E[X]2

(d) Use bisection search to estimate
√
5 to 4 decimal places by hand, showing

your work at each step of the way. See problem 5-2 for a refresher on bisection
search.

Start out with interval [2, 3] since 22 = 4 and 32 = 9
The function with

√
5 as a root can just be f(x) = x2 − 5

Middle is 2.5. f(2.5) = 1.25. It is less than 0 so the guess is too low. We
must lower the bounds

Middle is 2.25. f(2.25) = 0.0625. It is less than 0 so the guess is too low.
We must lower the bounds

Middle is 2.125. f(2.125) = -0.484375. It is greater than 0 so the guess is
too high. We must raise the bounds

Middle is 2.1875. f(2.1875) = -0.21484375. It is greater than 0 so the guess
is too high. We must raise the bounds

Middle is 2.21875. f(2.21875) = -0.0771484375. It is greater than 0 so the
guess is too high. We must raise the bounds

Middle is 2.234375. f(2.234375) = -0.007568359375. It is greater than 0 so
the guess is too high. We must raise the bounds

Middle is 2.2421875. f(2.2421875) = 0.02740478515625. It is less than 0 so
the guess is too low. We must lower the bounds

Middle is 2.23828125. f(2.23828125) = 0.0099029541015625. It is less than
0 so the guess is too low. We must lower the bounds

Middle is 2.236328125. f(2.236328125) = 0.001163482666015625. It is less
than 0 so the guess is too low. We must lower the bounds

Middle is 2.2353515625. f(2.2353515625) = -0.0032033920288085938. It is
greater than 0 so the guess is too high. We must raise the bounds

Middle is 2.23583984375. f(2.23583984375) = -0.001020193099975586. It is
greater than 0 so the guess is too high. We must raise the bounds

Middle is 2.236083984375. f(2.236083984375) = 7.158517837524414e-05. It
is less than 0 so the guess is too low. We must lower the bounds

2



Middle is 2.2359619140625. f(2.2359619140625) = -0.00047431886196136475.
It is greater than 0 so the guess is too high. We must raise the bounds

Middle is 2.23602294921875. f(2.23602294921875) = -0.00020137056708335876.
It is greater than 0 so the guess is too high. We must raise the bounds

Middle is 2.236053466796875. f(2.236053466796875) = -6.489362567663193e-
05. It is greater than 0 so the guess is too high. We must raise the bounds

Now, f(x) rounded to 4 decimal places is 0. Therefore, the most accurate 4
decimals we have is:

√
5 ≈ 2.2361

(e) Use ”merge sort” to sort the list [4, 8, 7, 7, 4, 2, 3, 1]. Do the problem by hand
and show your work at each step of the way. See problem 23-3 for a refresher
on merge sort.

input list:[4,8,7,7,4,2,3,1] break it in half: [4,8,7,7] 4,2,3,1] sort the two halves
input list: [4,8,7,7] break it in half: [4,8] [7,7] sort the two halves
input list: [4,8] break it in half: [4] [8] the two halves have only one element

each, so they are already sorted so we can combine them to get [4,8]
input list: [7,7] break it in half: [7] [7] the two halves have only one element

each, so they are already sorted so we can combine them to get [7,7]
now we have two sorted lists [4,8] and [7,7] so we can combine them to get

[4,7,7,8]
input list: [4,2,3,1] break it in half: [4,2] [3,1] sort the two halves
input list: [4,2] break it in half: [4] [2] the two halves have only one element

each, so they are already sorted so we can combine them to get [2, 4]
input list: [3,1] break it in half: [3] [1] the two halves have only one element

each, so they are already sorted so we can combine them to get [3, 1]
now we have two sorted lists [2, 4] and [3, 1] so we can combine them to get

[1, 2, 3, 4]
now we have two sorted lists [4,7,7,8] and [1, 2, 3, 4] so we can combine them

to get [1, 2, 3, 4, 4, 7, 7, 8]

1 Problem 2

(a)Other people make 1000 successful trips through the wormhole with no fail-
ures. What is the likelihood function for k given these 1000 successful trips?

data = [1000 successful]
L(k|[1000successful]) = k1000

(b)What is the posterior distribution for k given these 1000 successful trips?
(This is the same as just normalizing the likelihood function).

3



1 =

∫ 1

0

c ∗ k1000dk

= c
k1001

1001

∣∣∣∣1
0

c = 1001

P (k|1000 successes) = 1001k1000

P (0.99|100successes) =∼ 0.043

(c)Assuming that you will use the wormhole 500 times per year, what is the
posterior probability that the risk of disappearing forever into the wormhole is
no more than your risk of dying from a car crash in a given year (1 in 10000)?
In other words, what is P (1k500 ≤ 110000|1000successes)

1− k500 ≤ 1

10000

k500 ≥ 9999

10000

k ≥ 500

√
9999

10000

P (k ≥ 500

√
9999

10000
) = 1−

∫ k

0

1001k1000dk

= 1− k1001
∣∣ 500

√
9999

10000
0

=∼ 0.000200

1.1 Part 2

(a)Looking at the given posterior distribution, how many successes have you
counted?

5000, because k is raised to that power, implying k had to have happened
5000 times.
(b)Suppose you observe 2000 more successes. What is the posterior distribution
now?

Using similar reasoning to part 1-b, we can see that the new posterior dis-
tribution will be:

P (k|7000 successes) = 7001k7000

P (0.999|7000 successes) =∼ 6.362

4



1.2 Part 3

(a)Suppose you observe 2000 more successes. Fill in the blanks:
likelihood = k2000

p(2000successes|k = 0.999) =∼ 0.1351

prior * likelihood =
5001k2000+5000

after re-normalizing the prior * likelihood function, we get:
posterior distribution = 7001k7000

(with the re-normalization constant being
7001

5001
)

The reason why this is the same is that the posterior distribution is propor-
tional to k7000, and so is the likelihood function for P (7000successes|k). Since
both likelihood functions are equal, normalizing each will give the exact same
results.

1.3 Part 4

(a)Assuming that you will use the wormhole 500 times per year, how many more
people do you need to observe successfully come out of the wormhole to be 99%
sure the risk of disappearing forever into the wormhole is no more than your
risk of dying from a car crash in a given year (1 in 10000)?

L = k5000+n

Through similar reasoning in Part 3a, we have:

P (5000 +N) = (5001 + n)k5000+n

And to check if this function is right,

a =
500

√
9999

10000

0.99 = P (k ≥ a)|5000 +Nsuccesses)

= 1−
∫ a

0

(5001 + n)k5000+ndk

= 1− k5001+n
∣∣a
0

0.01 = (
500

√
9999

10000
)5001+n

n =
ln 0.01

ln 500

√
9999
10000

− 5001

=∼ 23019699

5


