Machine Learning Assignment 44

Your Name

February 27, 2021

Problem 1

(a)

Solution

$$
\begin{gathered}
E[x]=\int_{a}^{b} k x d x=\frac{k b^{2}}{2}-\frac{k a^{2}}{2} \\
E\left[x^{2}\right]=\int_{a}^{b} k x^{2} d x=\frac{k b^{3}}{3}-\frac{k a^{3}}{3} \\
E\left[x^{2}\right]-E[x]^{2}=\frac{b^{3}-a^{3}}{3}-\frac{\left(b^{2}-a^{2}\right)^{2}}{2} \\
k *\left(\frac{b^{3}-a^{3}}{3}-\frac{b^{4}-2 a^{2} * b^{2}+a^{4}}{2}\right)
\end{gathered}
$$

Note: No way of simplifying after getting to common denominator so I'm done here
(b)

Solution

$$
\begin{gathered}
E[x]=\int \lambda * x * e^{-\lambda * x}=\frac{1}{\lambda} \\
E\left[x^{2}\right]=\int \lambda * x * e^{-\lambda * x^{2}}=\frac{1}{2} \\
E\left[x^{2}\right]-E[x]^{2}=\frac{1}{2}-\frac{1}{\lambda^{2}}
\end{gathered}
$$

(c)

Solution

$$
\begin{gathered}
E[x]=\lambda \\
E\left[x^{2}\right]=\int\left(x * \frac{\lambda^{n} * e^{-\lambda}}{n!}\right)^{2}
\end{gathered}
$$

Should all simplify to just lamda, I can't do that whole integral for $E\left[x^{2}\right]$

