Machine Learning Assignment 61

George Meza
March 11, 2021

Problem 1

Problem 4

(A.a)

$$
\begin{gathered}
P(A \cap B)=P(A)+P(B)-P(A \cup B) \\
P(A \cap B)=0.4+0.7-0.9=1.1=4-0.9=0.2
\end{gathered}
$$

(A.b)

$$
P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)=0.7-0.2=0.5
$$

(A.c)

$$
P(A-B)=P(A)-P(A \cap B)=0.4-0.2=0.2
$$

(A.d)

$$
P\left(A^{c}-B\right)=P\left(A^{c}\right)-P\left(A^{c} \cap B\right)=0.6-0.5=0.1
$$

(A.e)

Wouldn't this just be $\mathrm{P}(\mathrm{B})$. Hear me out, it's everything in A complement and B. Everything in A complement is just B without the intersection so when we combine it with B, we get the only thing we didn't have prior, the intersection. So the probability would just be 0.7 , right?

(A.f)

0.2 , It's the exact same as part a but with extra steps. (Reference part e for why I believe (B union A complement) is just B)

(B.a)

$\frac{1}{6}$, it's just the amount of 4's on the dice over the amount of outcomes on the dice.

(B.b)

$1+6,6+1,2+5,5+2,3+4,4+3$.
All rolls that equal seven(above), over every roll possible for both, which would be $\frac{6}{36}$ because there are 36 outcomes for the dice rolls.

(B.c)

Both events are independent, so it would be $\frac{5}{6} \cdot \frac{3}{6} \cdot \frac{15}{36}=\frac{5}{12}$.

