# Pishro-Nik Probabilities 

Justin Hong

November 15, 2020

## Problem 31-1

## Problems in form of images...

## Solution

Problem a:
a.

$$
P\left(X_{2}=4\right)=\frac{1}{6}=0.1667
$$

b.

$$
P\left(X_{1}+X_{2}=7\right)=\frac{6}{36}(\text { six out of thirty six total outcomes })=0.1667
$$

c.

$$
P\left(X_{1} \neq 2 \text { and } X_{2} \geq 4\right)=P\left(X_{1} \neq 2\right) \cdot P\left(X_{2} \geq 4\right)=\frac{5}{6} \cdot \frac{3}{6}=\frac{15}{36}=0.4167
$$

Problem b:
a.

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)=0.4+0.7-0.9=0.2
$$

b.

$$
P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)=0.7-0.2=0.5
$$

c.

$$
P(A-B)=P(A)-P(A \cap B)=0.4-0.2=0.2
$$

d.

$$
P\left(A^{c}-B\right)=0.1
$$

e.

$$
P\left(A^{c} \cup B\right)=P(B)=0.8
$$

f.

$$
P\left(A \cap\left(B \cup A^{c}\right)\right)=P(A \cap B)=0.2
$$

## Problem c:

$P(k$ red balls (repeated draws $))=\binom{20}{k}(0.3)^{k}(0.7)^{20-k}$
Problem d:
$P\left(k\right.$ red balls (no repeated draws) $=\frac{\binom{30}{k} \cdot\binom{70}{20-k}}{\binom{100}{20}}$
Problem e:


