Distribution Properties

Justin Hong

October 25, 2020

Problem 33-2

a. Given that $X \sim p(x)$, where $p(x)$ is a continuous distribution, prove that for any real number a we have $E[a X]=a E[X]$.
b. Given that $X_{1}, X_{2} \sim p(x)$, where $p(x)$ is a continuous distribution, prove that $E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]$.
c. Given that $X \sim p(x)$ where $p(x)$ is a continuous probability distribution, prove the identity $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}$.

Solution

a.

$$
\begin{aligned}
\mathrm{E}[a X] & =\int_{-\infty}^{\infty} a \cdot X \cdot p_{\lambda}(x) \mathrm{d} x \\
& =a \cdot \int_{-\infty}^{\infty} X \cdot p_{\lambda}(x) \mathrm{d} x \\
& =a \cdot \mathrm{E}[X]
\end{aligned}
$$

b.

$$
\begin{aligned}
\operatorname{Var}[X]= & \mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right] \\
& =\mathrm{E}\left[X^{2}-2 X \mathrm{E}[X]+\mathrm{E}[X]^{2}\right] \\
= & \mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X \mathrm{E}[X]]+\mathrm{E}\left[\mathrm{E}[X]^{2}\right] \\
= & \mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \mathrm{E}[X]+\mathrm{E}[X]^{2} \\
= & \mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X]^{2}+\mathrm{E}[X]^{2} \\
= & \mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} \\
& \text { (used } \mathrm{E}[\mathrm{E}[X]]=\mathrm{E}[X])
\end{aligned}
$$

