Distribution Properties

Justin Hong

October 25, 2020

Problem 33-2

a. Given that $X \sim p(x)$, where p(x) is a continuous distribution, prove that for any real number a we have E[aX] = aE[X].

b. Given that $X_1, X_2 \sim p(x)$, where p(x) is a continuous distribution, prove that $E[X_1 + X_2] = E[X_1] + E[X_2]$.

c. Given that $X \sim p(x)$ where p(x) is a continuous probability distribution, prove the identity $Var[X] = E[X^2] - E[X]^2$.

Solution

a.

$$E[aX] = \int_{-\infty}^{\infty} a \cdot X \cdot p_{\lambda}(x) \, dx$$
$$= a \cdot \int_{-\infty}^{\infty} X \cdot p_{\lambda}(x) \, dx$$
$$= a \cdot E[X]$$

b.

$$Var[X] = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}]$
= $E[X^{2}] - 2E[XE[X]] + E[E[X]^{2}]$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$
= $E[X^{2}] - 2E[X]^{2} + E[X]^{2}$
= $E[X^{2}] - E[X]^{2}$
(used $E[E[X]] = E[X]$)