Machine Learning Assignment 30

Maia Dimas

Problem 30-1A

A:
About a 6% chance

$$
\begin{aligned}
P(T \leq 1) & =\frac{1^{2}}{16} \\
& =0.0625
\end{aligned}
$$

B:

You can find the chance of it taking longer than 2 hours, by finding the chance it takes LESS than 2 hours. Its about an 75% chance anyway

$$
\begin{aligned}
P(T \leq 2) & =\frac{2^{2}}{16} \\
& =0.25 \\
P(T>2) & =1-P(T \leq 2) \\
& =0.75
\end{aligned}
$$

C:
Around a 50% chance

$$
\begin{aligned}
P(1 \leq T \leq 3) & =P(T \leq 3)-P(T \leq 1) \\
& =0.5
\end{aligned}
$$

Problem 30-1B

Around 18\%

$$
\begin{aligned}
P(T \leq 3 \mid T \geq 2) & =\frac{P(T \leq 3 \cap T \geq 2)}{P(T \geq 2)} \\
& =\frac{e^{-\frac{2}{5}}-e^{-\frac{3}{5}}}{e^{-\frac{2}{5}}} \\
& =0.1812692469
\end{aligned}
$$

Problem 30-1C

A:

$$
\begin{aligned}
P(\{k\}) & =\sum_{k=1}^{\infty} \frac{c}{3^{k}} \\
\sum_{k=1}^{\infty} \frac{c}{3^{k}} & =1 \\
\frac{\frac{c}{3}}{1-\frac{1}{3}} & =1 \\
\frac{c}{2} & =1 \\
c & =2
\end{aligned}
$$

B:

$$
\begin{aligned}
P(\{2,4,6\} & =\frac{2}{3^{2}}+\frac{2}{3^{4}}+\frac{2}{3^{6}} \\
& =\frac{182}{729} \\
& =0.2496570645 \quad \text { (Calculator) }
\end{aligned}
$$

C: .

$$
\begin{aligned}
P(\{3,4,5, \ldots\}) & =\sum_{k=3}^{\infty} \frac{2}{3^{k}} \\
& =\frac{\frac{2}{27}}{1-\frac{1}{3}} \\
& =\frac{1}{9} \\
& =0.1 \ldots
\end{aligned}
$$

