Machine Learning Assignment 36

Maia Dimas

Problem 36-1

First, you need the likelihood. Knowing that this is a discrete uniform distribution, the chance of seeing any number is $\frac{1}{n}$. With this you can find the likelihood.

$$
P(\{52,30,68,7\} \mid n)= \begin{cases}\frac{1}{n^{4}} & n \geq 68 \\ 0 & n<68\end{cases}
$$

As you now have the likelihood, you can use that to find the posterior distribution, the needed function to calculate the max number of tanks to a 95% certainty.

$$
\begin{aligned}
P(n \mid\{52,30,68,7\}) & =\sum_{n=1}^{\infty} c \cdot P(\{52,30,68,7\} \mid n) \\
& =c \cdot \sum_{n=68}^{\infty} \frac{1}{n^{4}} \\
c \cdot \sum_{n=68}^{\infty} \frac{1}{n^{4}} & =1 \\
c & \approx 9.22742 \cdot 10^{5} \\
P(n \mid\{52,30,68,7\}) & = \begin{cases}\frac{9.22742 \cdot 10^{5}}{k^{5}} & k \geq 68 \\
0 & k<68\end{cases}
\end{aligned}
$$

Now that we have the posterior distribution, we can use the handy-dandy python function that was made for this purpose. That tells us with roughly 95% certainty that there are a maximum of 185 tanks.

