## Assignment 21

Nathan Allen

October 2020
(a) Find the value of $k$ such that $p(x)$ is a valid probability distribution.

Answer The probability distribution must integrate to 1 so

$$
\begin{gathered}
1=\int_{3}^{7} k \mathrm{~d} x \\
=\left.k * x\right|_{3} ^{7} \\
=7 k-3 k \\
=4 k=1 \\
k=1 / 4
\end{gathered}
$$

(b) Given that $X \approx U[3,7]$, compute $E[X]$.

Answer

$$
E[X]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x
$$

Since $p(x)=0$ when $x \notin[3,7]$

$$
\begin{aligned}
E[X] & =\int_{3}^{7} x * \frac{1}{4} \mathrm{~d} x \\
& =\left.\frac{x^{2}}{8}\right|_{3} ^{7} \\
& =\frac{49}{8}-\frac{9}{8} \\
& =\frac{40}{8}=5
\end{aligned}
$$

(c) Given that $X \approx U[3,7]$, compute $\operatorname{Var}[X]$.

Answer since $\operatorname{Var}[N]=E\left[(N E[N])^{2}\right]$ and $E[N]=5 \operatorname{Var}[N]=E\left[(N-5)^{2}\right]$

$$
=\frac{1}{4} * \int_{3}^{7} x^{2}-10 x+25 \mathrm{~d} x
$$

$$
\begin{gathered}
=\frac{1}{4} * \frac{x^{3}}{3}-5 * x^{2}+\left.25 x\right|_{3} ^{7} \\
=\frac{1}{4} *\left(\frac{133}{3}-39\right) \\
=\frac{1}{4} *\left(\frac{16}{3}\right) \\
=\frac{4}{3}
\end{gathered}
$$

