Assignment 31

al8453na1108

November 2020

1

 $\frac{1}{6}$

(b) The set of all possible combinations for $X_1 + X_2 = 7$ is

$$[1, 6], [2, 5], [3, 4], [4, 3], [5, 2], [6, 1]$$

Since there are six possibilities out of the 36 possible outcomes for rolling a dice, the probability of $X_1+X_2=7$ is $\frac{1}{6}$

(c) The probability that $X_1 \neq 2$ is $\frac{5}{6}$ and the probability that $X_2 \geq 4$ is $\frac{1}{2}$ since 4,5,6 are possibilities out of 6.

$$\frac{5}{6} * \frac{1}{2} = \frac{5}{12}$$

2

(a)
$$P(A \cap B) = 0.4 + 0.7 - 0.9 = 0.2$$

(b)
$$P(A^c \cap B) = 0.5$$

(c)
$$P(A-B) = 0.4 - 2 = 0.2$$

(d)
$$P(A^c - B) = 0.6 - 0.5 = 0.1$$

(e)
$$P(A^c \cup B) = 0.1 + 0.5 = 0.6$$

(f)
$$P(A^c \cap B) = 0.2$$

$$\frac{20}{k!(20-k)!}*(\frac{3}{10})^k*(\frac{7}{10})^{20-k}$$

$$\frac{\frac{30}{k!(30-k)!}*\frac{70}{(20-k)!(50+k)!}}{\frac{100!}{20!80!}}$$