Assignment 31

al8453na1108
November 2020

1
(a)

$$
\frac{1}{6}
$$

(b) The set of all possible combinations for $X_{1}+X_{2}=7$ is

$$
[1,6],[2,5],[3,4],[4,3],[5,2],[6,1]
$$

Since there are six possibilities out of the 36 possible outcomes for rolling a dice, the probability of $X_{1}+X_{2}=7$ is $\frac{1}{6}$
(c) The probability that $X_{1} \neq 2$ is $\frac{5}{6}$ and the probability that $X_{2} \geq 4$ is $\frac{1}{2}$ since 4,5,6 are possibilities out of 6 .

$$
\frac{5}{6} * \frac{1}{2}=\frac{5}{12}
$$

2
(a)

$$
P(A \cap B)=0.4+0.7-0.9=0.2
$$

(b)

$$
P\left(A^{c} \cap B\right)=0.5
$$

(c)

$$
P(A-B)=0.4-2=0.2
$$

(d)

$$
P\left(A^{c}-B\right)=0.6-0.5=0.1
$$

(e)

$$
P\left(A^{c} \cup B\right)=0.1+0.5=0.6
$$

(f)

$$
P\left(A^{c} \cap B\right)=0.2
$$

3

$$
\frac{20}{k!(20-k)!} *\left(\frac{3}{10}\right)^{k} *\left(\frac{7}{10}\right)^{20-k}
$$

4

$$
\frac{\frac{30}{k!(30-k)!} * \frac{70}{(20-k)!(50+k)!}}{\frac{100!}{20!80!}}
$$

