Assignment 36

Nathan Allen
November 2020

First we must find $P(1,17,8,25,3 \mid n$. To do this we must find

$$
P(52,30,68,7)=\frac{1}{n} * \frac{1}{n} * \frac{1}{n} * \frac{1}{n}=\frac{1}{n^{4}}
$$

therefore

$$
P(1,17,8,25,3 \mid n)= \begin{cases}\frac{1}{n^{4}} & n \geq 68 \\ 0 & \text { otherwise }\end{cases}
$$

Then we need to find $P(k \mid 1,17,8,25,3)$ by computing

$$
\begin{gathered}
\sum_{n=66}^{\infty} c * \frac{1}{n^{4}}=1 \\
c=\frac{1}{\sum_{n=66}^{\infty} \frac{1}{n^{4}}} \\
c=922742 \\
P(k \mid 1,17,8,25,3)=c * P(1,17,8,25,3 \mid k)=
\end{gathered}
$$

$$
\begin{cases}\frac{922742}{n^{4}} & n \geq 68 \\ 0 & \text { otherwise }\end{cases}
$$

Finally we can try to find with 95 percent certainty, what's the max number of tanks.

$$
\begin{gathered}
\sum_{n=66}^{T} \frac{922742}{n^{4}}=.95 \\
T=183
\end{gathered}
$$

