24-2

Nathan Reynoso
December 2020

Problem a

Compute the likelihood of the observed outcome if the coin were fair (i.e. $k=0.5$).

$$
\begin{aligned}
P(\mathrm{HHTTH} \mid k=0.5) & =P(\mathrm{H} \mid k=0.5) \cdot P(\mathrm{H} \mid k=0.5) \cdot P(\mathrm{~T} \mid k=0.5) \cdot P(\mathrm{~T} \mid k=0.5) \cdot P(\mathrm{H} \mid k=0.5) \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\
& =\frac{1}{32} \\
& =0.03125
\end{aligned}
$$

Problem b

Compute the likelihood of the observed outcome if the coin were slightly biased towards heads, say $k=0.55$.

$$
\begin{aligned}
P(\mathrm{HHTTH} \mid k=0.55) & =P(\mathrm{H} \mid k=0.55) \cdot P(\mathrm{H} \mid k=0.55) \cdot P(\mathrm{~T} \mid k=0.55) \cdot P(\mathrm{~T} \mid k=0.55) \cdot P(\mathrm{H} \mid k=0.55) \\
& =0.55 \cdot 0.55 \cdot 0.45 \cdot 0.45 \cdot 0.55 \\
& =0.55^{3} \cdot 0.45^{2} \\
& =0.03369
\end{aligned}
$$

Problem c

Compute the likelihood of the observed outcome for a general value of \mathbf{p}. Your answer should be a function of k.

$$
\begin{aligned}
P(\mathrm{HHTTH} \mid k) & =P(\mathrm{H} \mid k) \cdot P(\mathrm{H} \mid k) \cdot P(\mathrm{~T} \mid 1-k) \cdot P(\mathrm{~T} \mid 1-k) \cdot P(\mathrm{H} \mid k) \\
& =k \cdot k \cdot(1-k) \cdot(1-k) \cdot k \\
& =k^{3} \cdot(1-k)^{2}
\end{aligned}
$$

Problem d

