$$
30-1
$$

Nathan Reynoso

January 2021

Problem a

$$
P(T \leq t)= \begin{cases}\frac{1}{16} t^{2} & \text { for } 0 \leq t \leq 4 \\ 1 & \text { for } t \geq 4\end{cases}
$$

(a)Find the probability that the job is completed in less than one hour.

$$
\begin{aligned}
P(T \leq 1) & =\frac{1}{16}(1)^{2} \\
& =\frac{1}{16}
\end{aligned}
$$

(b)Find the probability that the job needs more than 2 hours.

$$
\begin{aligned}
P(T>2) & =1-P(T \leq 2) \\
& =1-\frac{1}{16}(2)^{2} \\
& =1-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

(c)Find the probability that $1 \leq T \leq 3$.

$$
\begin{aligned}
P(1 \leq T \leq 3) & =P(T \leq 3)-P(T \leq 1) \\
& =\frac{9}{16}-\frac{1}{16} \\
& =\frac{1}{2}
\end{aligned}
$$

Problem b

$$
P(T \geq t)=e^{-\frac{t}{5}}, \text { for all } t \geq 0
$$

What is the probability that it breaks down in the third year?

Problem c

$$
P(k)=P(\{k\})=\frac{c}{3^{k}} \text { for } k=1,2, \ldots
$$

(a)Find c.

$$
\begin{aligned}
& 1=P(1)+P(2)+P(3)+\ldots \\
& 1=c\left(\frac{1}{3}+\frac{1}{3^{2}}+\ldots\right) \\
& 1=c \cdot \frac{1}{2} \\
& c=2
\end{aligned}
$$

(b)Find $P(\{2,4,6\}$

$$
\begin{aligned}
P(\{2,4,6\}) & =P(2)+P(4)+P(6) \\
& =\frac{2}{9}+\frac{2}{81}+\frac{2}{729} \\
& =\frac{182}{729}
\end{aligned}
$$

(c)Find $P(\{3,4,5, \ldots\})$

$$
\begin{aligned}
P(\{3,4,5, \ldots\}) & =P(3)+P(4)+P(5)+\ldots \\
& =\frac{2}{3^{3}} \frac{3}{2} \\
& =\frac{1}{9}
\end{aligned}
$$

