Machine Learning Assignment 44

Riley Paddock

February 23, 2021

$$
\text { data }=\{[12,13],[12,13.5],[14,15],[14,16]\}
$$

Part A

Compute the likelihood function for $\boldsymbol{L}([a, b] \mid$ data $)$:

$$
\begin{gathered}
\boldsymbol{L}([a, b] \mid \text { data })=P([12,13]) * P(12,13.5) * P([14,15]) * P([14,16]) \\
\frac{13-12}{b-a} \cdot \frac{13.5-12}{b-a} \cdot \frac{15-14}{b-a} \cdot \frac{16-14}{b-a}=\frac{1 \cdot 1.5 \cdot 1 \cdot 2}{(b-a)^{4}} \\
=\frac{3}{(b-a)^{4}}
\end{gathered}
$$

Part B

Normalize the probability distribution of $\boldsymbol{L}([a, b] \mid$ data $)$
We know that $\boldsymbol{L}([a, b] \mid d a t a)=\frac{3}{(b-a)^{4}}$. And this is a valid probability distribution if

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c \cdot \frac{3}{(b-a)^{4}} d a d b=1
$$

This integral can be reduced to the following because the distribution is based off of data and we can base it off of the latest arrival and earliest departure

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{3}{(b-a)^{4}} d a d b=\int_{16}^{\infty} \int_{-\infty}^{12} \frac{3}{(b-a)^{4}} d a d b= \\
\int_{16}^{\infty} \frac{1}{(b-12)^{3}}-\frac{1}{\infty} d b=\int_{16}^{\infty} \frac{1}{(b-12)^{3}} d b=\left.\frac{-1}{2(b-12)^{2}}\right|_{16} ^{\infty}=0+\frac{1}{32}
\end{gathered}
$$

So we need $c \cdot \frac{1}{2}=1$ so $\mathrm{c}=32$ and the valid probability distribution is

$$
\frac{96}{(b-a)^{4}}
$$

Part C

What is the probability that the UFO came and left sometime during the day that it was sighted?
The UFO being seen in the day means that $0<a<$ amax and bmin $<b<24$ We also know that amax $=14$ and $\operatorname{bmin}=13$. So we need to find the pro.babilty that $0<a<12$ and $16<b<24$ This can be represented as

$$
\begin{aligned}
& \int_{16}^{24} \int_{0}^{12} \frac{96}{(b-a)^{4}} d a d b=\int_{16}^{24} \frac{32}{(b-12)^{3}}-\frac{32}{b^{3}} d b= \\
& \frac{16}{b^{2}}-\left.\frac{16}{(b-12)^{2}}\right|_{13} ^{24}=\frac{16}{24^{2}}-\frac{16}{12^{2}}-\frac{16}{13^{2}}+\frac{1}{1^{2}}=\frac{41}{48}
\end{aligned}
$$

Part D

What is the probability that the UFO arrived before 10 am ?
The probability that the UFO arrived before 10am is the probability that aj10. with that in mind our limits become $16<b<\infty$ and $-\infty<a<10$. So we set up the integral as:

$$
\int_{16}^{\infty} \int_{-\infty}^{10} \frac{96}{(b-a)^{4}} d a d b=\int_{16}^{\infty} \frac{32}{(b-10)^{3}} d b=\left.\frac{-16}{(b-10)^{2}}\right|_{16} ^{\infty}=\frac{16}{36}=\frac{4}{9}
$$

