Assignment 49-1

Riley Paddock

October 3, 2020

Part A.

Given that $X \sim p(x)$, where p(x) is a continuous distribution, prove that for any real number a we have E[aX] = aE[X]. Since p(x) is a continuous distribution then where $X \sim p(x)$ then

$$E[X] = \int_{-\infty}^{\infty} x \cdot p(x) dx$$

and

$$E[aX] = \int_{-\infty}^{\infty} ax \cdot p(x) dx = a \int_{-\infty}^{\infty} x \cdot p(x) dx = aE[X]$$

Therefore E[ax] = aE[X]

Part B

Given that X1,X2~p(x), where p(x) is a continuous distribution, prove that E[X1 + X2] = E[X1] + E[X2].

$$E[X_1 + X_2] = \int_{-\infty}^{\infty} (x_1 + x_2)p(x)dx = \int_{-\infty}^{\infty} x_1p(x) + x_2p(x)dx$$
$$\int_{-\infty}^{\infty} x_1p(x)dx + \int_{-\infty}^{\infty} x_2p(x)dx = E[X_1] + E[X_2]$$

Part C

Given that $X \sim p(x)$ where p(x) is a continuous probability distribution, prove the identity $Var[X] = E[X^2] - E[X]^2$

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 p(x) dx = \int_{-\infty}^{\infty} (x^2 - 2xE[X] + E[X]^2) p(x) dx = \int_{-\infty}^{\infty} x^2 p(x) dx - 2E[X] \int_{-\infty}^{\infty} xp(x) dx + E[X]^2 \int_{-\infty}^{\infty} p(x) dx = E[X^2] - 2E[X]^2 + E[X]^2 = E[X^2] - E[X]^2$$

Part D

Use bisection search to estimate $\sqrt{5}$ to 4 decimal places by hand, showing your work at each step of the way.

For a bisection search we need to find a function whose root is 0 meaning if f(x) = 0 then $x = \sqrt{5}$. For our bisection search we will use the function $f(x) = x^2 - 5$. This function works because if $f(x) = 0 \Rightarrow x^2 - 5 = 0 \Rightarrow x^2 = 5 \Rightarrow x = \sqrt{5}$. Also we will search between 2 and 3 because $\sqrt{4} = 2$ and $\sqrt{9} = 3$. We will now start our bisection search.

interval	guess(midpoint)	f(guess)	new bounds
[2,3]	2.5	f(2.5) = 1.25 > 0	[2, 2.5]
[2, 2.5]	2.25	f(2.25) = 0.0625 > 0	[2, 2.25]
[2, 2.25]	2.125	f(2.125) = -0.484 < 0	[2.125, 2.25]
[2.125, 2.25]	2.1875	f(2.1875) = -0.2148	[2.1875, 2.25]
[2.1875, 2.25]	2.21875	f(2.21875) = -0.0771	[2.21875, 2.25]
[2.21875, 2.25]	2.234375	f(2.234375) = -0.0075	[2.234375, 2.25]
[2.234375, 2.25]	2.2421875	f(2.2421875) = 0.0274	[2.234375, 2.2421875]
[2.234375, 2.2421875]	2.23828125	f(2.23828125) = 0.0099	[2.234375, 2.23828125]
[2.234375, 2.23828125]	2.236328125	f(2.236328125) = 0.0011	[2.234375, 2.236328125]
[2.234375, 2.236328125]	2.2353515625	f(2.2353515625) = -0.003	[2.2353515625, 2.236328125]
[2.2353515625, 2.236328125]	2.23583984375	f(2.23583984375) = -0.001	$\left[2.23583984375, 2.236328125\right]$
[2.23583984375, 2.236328125]	2.23608398438	f(2.23608398438) = 0.00007	[2.23583984375, 2.23608398438]
[2.23583984375, 2.23608398438]	2.23596191406	f(2.23596191406) = -0.00047	[2.23596191406, 2.23608398438]
[2.23596191406, 2.23608398438]	2.23602294922	f(2.23602294922) = -0.0002	[2.23602294922, 2.23608398438]

Now since both of our bounds start with a 2.2360 we know that $2.2360 < \sqrt{5} < 2.2361$

Part E

Use "merge sort" to sort the list [4,8,7,7,4,2,3,1]. Do the problem by hand and show your work at each step of the way.

A merge sort is a way of sorting a list by breaking it into its individual elements ans putting them back together in ordered pairs.Let us compute

$$\begin{split} & [4,8,7,7,4,2,3,1] \to [4,8,7,7], [4,2,3,1] \to [4,8], [7,7], [4,2], [3,1] \\ & \text{Now that we have pairs we will sort each pair and then combine sorted pairs} \\ & [4,8] \to [4], [8] \to [4,8] \\ & [7,7] \to [7], [7] \to [7,7] \\ & [4,2] \to [4], [2] \to [2,4] \\ & [3,1] \to [3], [1] \to [1,3] \\ & \text{Now to combine the ordered pairs} \\ & [4,8], [7,7] \to [4,7,7,8] \\ & [4,2], [3,1] \to [1,2,3,4] \\ & \text{Now to combine the larger lists} \\ & [4,7,7,8], [1,2,3,4] \to [1,2,3,4,4,7,7,8] \\ & \text{And that is the sorted list!} \end{split}$$