Assignment 49-1

Riley Paddock

October 3, 2020

Part A.

Given that $\mathrm{X} \sim \mathrm{p}(\mathrm{x})$, where $\mathrm{p}(\mathrm{x})$ is a continuous distribution, prove that for any real number a we have $E[a X]=$ $a E[X]$.
Since $p(x)$ is a continuous distribution then where $X \sim p(x)$ then

$$
E[X]=\int_{-\infty}^{\infty} x \cdot p(x) d x
$$

and

$$
E[a X]=\int_{-\infty}^{\infty} a x \cdot p(x) d x=a \int_{-\infty}^{\infty} x \cdot p(x) d x=a E[X]
$$

Therefore $\mathrm{E}[\mathrm{ax}]=\mathrm{aE}[\mathrm{X}]$

Part B

Given that $\mathrm{X} 1, \mathrm{X} 2 \sim \mathrm{p}(\mathrm{x})$, where $\mathrm{p}(\mathrm{x})$ is a continuous distribution, prove that $E[X 1+X 2]=E[X 1]+E[X 2]$.

$$
\begin{gathered}
E\left[X_{1}+X_{2}\right]=\int_{-\infty}^{\infty}\left(x_{1}+x_{2}\right) p(x) d x=\int_{-\infty}^{\infty} x_{1} p(x)+x_{2} p(x) d x \\
\int_{-\infty}^{\infty} x_{1} p(x) d x+\int_{-\infty}^{\infty} x_{2} p(x) d x=E\left[X_{1}\right]+E\left[X_{2}\right]
\end{gathered}
$$

Part C

Given that $\mathrm{X} \sim \mathrm{p}(\mathrm{x})$ where $\mathrm{p}(\mathrm{x})$ is a continuous probability distribution, prove the identity $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}$

$$
\begin{gathered}
\operatorname{Var}[X]=\int_{-\infty}^{\infty}(x-E[X])^{2} p(x) d x=\int_{-\infty}^{\infty}\left(x^{2}-2 x E[X]+E[X]^{2}\right) p(x) d x= \\
\int_{-\infty}^{\infty} x^{2} p(x) d x-2 E[X] \int_{-\infty}^{\infty} x p(x) d x+E[X]^{2} \int_{-\infty}^{\infty} p(x) d x= \\
E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2}=E\left[X^{2}\right]-E[X]^{2}
\end{gathered}
$$

Part D

Use bisection search to estimate $\sqrt{5}$ to 4 decimal places by hand, showing your work at each step of the way.
For a bisection search we need to find a function whose root is 0 meaning if $f(x)=0$ then $x=\sqrt{5}$. For our bisection search we will use the function $f(x)=x^{2}-5$. This function works because if $f(x)=0 \Rightarrow x^{2}-5=0 \Rightarrow x^{2}=$ $5 \Rightarrow x=\sqrt{5}$. Also we will search between 2 and 3 because $\sqrt{4}=2$ and $\sqrt{9}=3$. We will now start our bisection search.

interval	guess(midpoint)	$\mathrm{f}(\mathrm{guess})$	new bounds
$[2,3]$	2.5	$\mathrm{f}(2.5)=1.25>0$	$[2,2.5]$
$[2,2.5]$	2.25	$\mathrm{f}(2.25)=0.0625>0$	$[2,2.25]$
$[2,2.25]$	2.125	$\mathrm{f}(2.125)=-0.484<0$	$[2.125,2.25]$
$[2.125,2.25]$	2.1875	$\mathrm{f}(2.1875)=-0.2148$	$[2.1875,2.25]$
$[2.1875,2.25]$	2.21875	$\mathrm{f}(2.21875)=-0.0771$	$[2.21875,2.25]$
$[2.21875,2.25]$	2.234375	$\mathrm{f}(2.234375)=-0.0075$	$[2.234375,2.25]$
$[2.234375,2.25]$	2.2421875	$\mathrm{f}(2.2421875)=0.0274$	$[2.234375,2.2421875]$
$[2.234375,2.2421875]$	2.23828125	$\mathrm{f}(2.23828125)=0.0099$	$[2.234375,2.23828125]$
$[2.234375,2.23828125]$	2.236328125	$\mathrm{f}(2.236328125)=0.0011$	$[2.234375,2.236328125]$
$[2.234375,2.236328125]$	2.2353515625	$\mathrm{f}(2.2353515625)=-0.003$	$[2.2353515625,2.236328125]$
$[2.2353515625,2.236328125]$	2.23583984375	$\mathrm{f}(2.23583984375)=-0.001$	$[2.23583984375,2.236328125]$
$[2.23583984375,2.236328125]$	2.23608398438	$\mathrm{f}(2.23608398438)=0.00007$	$[2.23583984375,2.23608398438]$
$[2.23583984375,2.23608398438]$	2.23596191406	$\mathrm{f}(2.23596191406)=-0.00047$	$[2.23596191406,2.23608398438]$
$[2.23596191406,2.23608398438]$	2.23602294922	$\mathrm{f}(2.23602294922)=-0.0002$	$[2.23602294922,2.23608398438]$

Now since both of our bounds start with a 2.2360 we know that $2.2360<\sqrt{5}<2.2361$

Part E

Use "merge sort" to sort the list $[4,8,7,7,4,2,3,1]$. Do the problem by hand and show your work at each step of the way.
A merge sort is a way of sorting a list by breaking it into its individual elements ans putting them back together in ordered pairs.Let us compute
$[4,8,7,7,4,2,3,1] \rightarrow[4,8,7,7],[4,2,3,1] \rightarrow[4,8],[7,7],[4,2],[3,1]$
Now that we have pairs we will sort each pair and then combine sorted pairs
$[4,8] \rightarrow[4],[8] \rightarrow[4,8]$
$[7,7] \rightarrow[7],[7] \rightarrow[7,7]$
$[4,2] \rightarrow[4],[2] \rightarrow[2,4]$
$[3,1] \rightarrow[3],[1] \rightarrow[1,3]$
Now to combine the ordered pairs
$[4,8],[7,7] \rightarrow[4,7,7,8]$
$[4,2],[3,1] \rightarrow[1,2,3,4]$
Now to combine the larger lists
$[4,7,7,8],[1,2,3,4] \rightarrow[1,2,3,4,4,7,7,8]$
And that is the sorted list!

