Assignment 50-1

riley.r.paddock
October 2020

Part 0

find P (two rolls of 1 and 3 rolls of $2 \mid$ switch $)$
We know by Bayes Theorem that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{c} \cdot \mathrm{L}(\mathrm{A}-\mathrm{B})$. We can find $\mathrm{L}(\mathrm{A} \mid$ B)

$$
L(\text { two rolls of } 1 \text { and } 3 \text { rolls of } 2 \mid \text { switch })=
$$

$(5$ choose 2$) \cdot P($ roll of 1$) \cdot P($ roll of 1$) \cdot P($ roll of 2$) \cdot P($ roll of 2$) \cdot P($ roll of 2$)=$
This breaks into 2 parts. One where we find the probability based on a fair die and one where it is based on a die with 3 sides of 1 and 3 sides of 2 .

Fair Die:
$L($ two rolls of 1 and 3 rolls of $2 \mid$ switch $)=(5 C 2) \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}=\frac{1}{6^{5}}=\frac{5!}{2!\cdot 3!} 0.0001286=$ 0.001286

Biased $\operatorname{Die}(3$ sides of 1,3 sides of 2$)$:
L (two rolls of 1 and 3 rolls of $2 \mid$ switch $)=(5 C 2) \cdot \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6}=\frac{3^{5}}{6^{5}}=\frac{5!}{2!\cdot 3!} 0.03125=$ 0.3125
$P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $)= \begin{cases}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{cases}$

Part 1

Suppose that, before the magician rolled the die, you were agnostic: you believed there was a 50% chance that the die was fair.
a. Given your prior belief, what is the prior distribution P (switch)?

$$
P(\text { switch })= \begin{cases}0.5 & \text { switch }=\text { True } \\ 0.5 & \text { switch }=\text { False }\end{cases}
$$

b. What is the posterior distribution P (switch|two rolls of 1 and three rolls of 2$)$?

By Bayes theorem we know that P (parameter \mid data $)=\propto \mathrm{P}$ (data \mid parameter $)$.
P (parameter). We can apply this to our situation by recognizing that P (data|parameter)
$=\mathrm{P}($ two rolls of 1 and three rolls of $2 \mid$ switch $)$ and $\mathrm{P}($ parameter $)=\mathrm{P}($ switch $)$.
Then We compute
$P($ switch \mid two rolls of 1 and 3 rolls of 2$) \propto P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $) \cdot P($ switch $)=$
$\left\{\begin{array}{ll}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{array} \cdot\left\{\begin{array}{ll}0.5 & \text { switch }=\text { True } \\ 0.5 & \text { switch }=\text { False }\end{array}= \begin{cases}0.15625 & \text { switch }=\text { True } \\ 0.000643 & \text { switch }=\text { False }\end{cases}\right.\right.$
However this is not our probability yet because it has to sum up to 1 so we need to solve

$$
c(0.15625+0.000643)=1 \rightarrow c=\frac{1}{0.156893}=6.37377
$$

So the probability will be
$P($ switch \mid two rolls of 1 and 3 rolls of 2$)= \begin{cases}0.15625 \cdot 6.37377=0.996 & \text { switch }=\text { True } \\ 0.000643 \cdot 6.37377=0.004, & \text { switch }=\text { False }\end{cases}$

Part 2

Suppose that, before the magician rolled the die, you were optimistic: you believed there was a 99% chance that the die was fair.
a. Given your prior belief, what is the prior distribution P (switch)?

$$
P(\text { switch })= \begin{cases}0.01 & \text { switch }=\text { True } \\ 0.99 & \text { switch }=\text { False }\end{cases}
$$

b. What is the posterior distribution P (switch|two rolls of 1 and three rolls of 2)?

Like in Part 1 we will use this property of Bayes theorem to find P (switch-two rolls of 1 and three rolls of 2)
$P($ switch \mid two rolls of 1 and 3 rolls of 2$) \propto P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $) \cdot P($ switch $)=$
$\left\{\begin{array}{ll}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{array} .\left\{\begin{array}{ll}0.01 & \text { switch }=\text { True } \\ 0.99 & \text { switch }=\text { False }\end{array}= \begin{cases}0.003125 & \text { switch }=\text { True } \\ 0.00127314 & \text { switch }=\text { False }\end{cases}\right.\right.$
However this is not our probability yet because it has to sum up to 1 so we need to solve

$$
c(0.003125+0.00127314)=1 \rightarrow c=\frac{1}{0.00439814}=227.3688
$$

So the probability will be
$P($ switch \mid two rolls of 1 and 3 rolls of 2$)= \begin{cases}227.3688 * 0.003125=0.710, & \text { switch }=\text { True } \\ 227.3688 * 0.00127314=0.289, & \text { switch }=\text { False }\end{cases}$

Part 3

Suppose that, before the magician rolled the die, you were pessimistic: you believed there was a 1% chance that the die was fair.
a. Given your prior belief, what is the prior distribution P (switch)?

$$
P(\text { switch })= \begin{cases}0.99 & \text { switch }=\text { True } \\ 0.01 & \text { switch }=\text { False }\end{cases}
$$

b. What is the posterior distribution P (switch-two rolls of 1 and three rolls of $2)$?

Again like in Parts 1 and 2 we will use this property of Bayes theorem to find P (switch - two rolls of 1 and three rolls of 2)
$P($ switch \mid two rolls of 1 and 3 rolls of 2$) \propto P($ two rolls of 1 and 3 rolls of $2 \mid$ switch $) \cdot P($ switch $)=$
$\left\{\begin{array}{ll}0.3125 & \text { switch }=\text { True } \\ 0.001286 & \text { switch }=\text { False }\end{array}\left\{\begin{array}{ll}0.99 & \text { switch }=\text { True } \\ 0.01 & \text { switch }=\text { False }\end{array}= \begin{cases}0.309375 & \text { switch }=\text { True } \\ 0.00001286 & \text { switch }=\text { False }\end{cases}\right.\right.$

However this is not our probability yet because it has to sum up to 1 so we need to solve

$$
c(0.309375+0.00001286)=1 \rightarrow c=\frac{1}{0.30938786}=3.23
$$

So the probability will be
$P($ switch \mid two rolls of 1 and 3 rolls of 2$)= \begin{cases}3.232188 \cdot 0.309375=0.99996, & \text { switch }=\text { True } \\ 3.232188 \cdot 0.00001286=0.00004, & \text { switch }=\text { False }\end{cases}$

