Assignment 60-3

riley.r.paddock

November 2020

A.

Model $=50+20(\mathrm{GPA})+0.07(\mathrm{IQ})+35($ Gender $)+0.01(\mathrm{GPA})(\mathrm{IQ})-10(\mathrm{GPA})($ Gender $)$
Given a fixed IQ and GPA when we vary the gender we get

$$
\begin{gathered}
C=50+20(G P A)+0.07(I Q)+0.01(G P A)(I Q) \\
\text { Male }=\mathrm{C} \\
\text { Female }=\mathrm{C}+35-10(\mathrm{GPA})
\end{gathered}
$$

So men earn more if the fixed GPA >3.5

B.

$\operatorname{Model}(\mathrm{GPA}=4.0, \mathrm{IQ}=110$, Gender $=\mathrm{F}=1)=$ $50+20(4)+0.07(110)+35+0.01(4.0)(110)-10(4.0)=$ $50+80+7.7+35+4.4-40=137.1$
$\$ 137,100$ as a starting salary

C.

This is false because the interaction term is small because the 2 terms that we are finding a coefficient for are large, not because there is a low effect of the interaction. An example of this would be finding a rating from 1-10 and you have an interaction term between cost and battery life. Cost is usually between $300-1000$ and battery life is between $5000-10000$. So even for a low end phone the cost times the battery life is around $1,500,000$. This is huge so in order to get something that will add up with our other terms to something between 1-10 we would need a tiny interaction term.

