Assignment 61-4

Riley Paddock

November 2020

A

Let A and B be 2 such events such that

$$
P(A)=0.4, P(B)=0.7, P(A \cup B)=0.9
$$

(a) Find $P(A \cap B)$

$$
\begin{gathered}
P(A)+P(B)-P(A \cap B)=P(A \cup B) \\
P(A \cap B)=P(A)+P(B)-P(A \cup B) \\
P(A \cap B)=0.4+0.7-0.9=1.1=4-0.9=0.2
\end{gathered}
$$

(b) Find $P\left(A^{c} \cap B\right)$

Same as what is not in A and in B

$$
P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)=0.7-0.2=0.5
$$

(c) Find $P(A-B)$

$$
P(A-B)=P(A)-P(A \cap B)=0.4-0.2=0.2
$$

(d) Find $P\left(A^{c}-B\right)$

$$
P\left(A^{c}-B\right)=P\left(A^{c}\right)-P\left(A^{c} \cap B\right)=(1-P(A))-0.5=1-0.4-0.5=0.1
$$

(e) Find $P\left(A^{c} \cup B\right)$

$$
P\left(A^{c} \cup B\right)=(1-P(A))+P(A \cap B)=(1-0.4)+0.2=0.8
$$

If you think about this as a venn diagram it is everything not in a combined with everything in B . Everything not in A is 1-P(A) and if you look at the diagram this includes part of B . The part not included is $A \cap B$. So we combine

1-A and $A \cap B$ to get $P\left(A^{c} \cup B\right)$
(f) Find $P\left(A \cap\left(B \cup A^{c}\right)\right)$

$$
P\left(A \cap\left(B \cup A^{c}\right)\right)=P(A \cap B)=0.2
$$

The reason $A \cap\left(B \cup A^{c}\right)$ is the same as $A \cap B$ is because if you think about $B \cup A^{c}$ the only part of that in A is $B \cap A$ so if we are finding the intersection of that and A it is only $A \cap B$

B

I roll a fair die twice and obtain 2 numbers: $X_{1}=$ the result of the first roll, $X_{2}=$ the result of the second roll.
(a) Find the probability that $X_{2}=4$

$$
P\left(X_{2}=4\right)=\frac{\text { Times where } X_{2}=4}{\text { Possibilities for } X_{2}}=\frac{1}{6}
$$

(b) Find the probability that $X_{1}+X_{2}=7$

$$
P\left(X_{2}=4\right)=\frac{\text { Times where } X_{1}+X_{2}=7}{\text { Possibilities for } X_{1}+X_{2}}=\frac{6}{11}
$$

(c) Find the probability that $X_{1} \neq 2$ and $X_{2} \geq 4$

$$
P\left(X_{1} \neq 2\right) \cdot P\left(X_{2} \geq 4\right)=\frac{5}{6} \cdot \frac{3}{6}=\frac{15}{36}=\frac{5}{12}
$$

