Assignment 64-3

Riley Paddock

November 2020

part A

$$
P_{Y}(k)= \begin{cases}Y=0.7 & k=0 \\ Y=0.3 & k=6\end{cases}
$$

part B

a)Find the range of the random variable R_{x}

The possibilities for R_{x} are $[0,1,2]$
b)Find $P(X \geq 1.5)$

$$
P(X \geq 1.5)=1-P(X<1.5)=1-\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{2}{6}=\frac{1}{3}
$$

c) Find $P(0<X<2)$

$$
P(0<X<2)=P(X<2)-P(X<0)=\frac{5}{6}-0=\frac{5}{6}
$$

d) Find $P(X=0 \mid X<2)$

$$
P(X=0 \mid X<2)=\frac{P(X=0 \cap X<2)}{P(X<2)}=\frac{\frac{1}{2}}{\frac{5}{6}}=\frac{6}{10}
$$

part C

- A and C are independent
- B and C are independent
- A and B are disjoint
- $\mathrm{P}(\mathrm{A} \cup \mathrm{C})=\frac{2}{3}, \mathrm{P}(\mathrm{B} \cup \mathrm{C})=\frac{3}{4}, \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\frac{11}{12}$

Find $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}(\mathrm{C})$
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{C})-\mathrm{P}(A \cap B)=\frac{2}{3}$
$\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(A \cap C)=\frac{3}{4}$
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(A \cap B)-\mathrm{P}(A \cap C)=\frac{11}{12}$
Adding the first 2 equations together we get:
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+2 \mathrm{P}(\mathrm{C})-\mathrm{P}(A \cap B)-\mathrm{P}(A \cap C)=\frac{17}{12}$
Subtracting the third equation from that we get:
$\mathrm{P}(\mathrm{C})=\frac{6}{12}=\frac{1}{2}$
Plugging back into the first equation and using A,C's independence we get:

$$
\begin{gathered}
P(A)+\frac{1}{2}-P(A) \frac{1}{2}=\frac{2}{3} \\
P(A)\left(1-\frac{1}{2}\right)=\frac{2}{3}-\frac{1}{2} \\
P(A)=\frac{1}{3}
\end{gathered}
$$

Plugging C into the second equation using B, C 's independence and the same logic we get:

$$
\begin{gathered}
P(B)\left(1-\frac{1}{2}\right)=\frac{3}{4}-\frac{1}{2} \\
P(B)=\frac{2}{4}=\frac{1}{2}
\end{gathered}
$$

part D

The info given can be sorted into these equations:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{D})=1 \\
& \mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})=0 \\
& \mathrm{P}(\mathrm{C})-2 \mathrm{P}(\mathrm{D})=0 \\
& \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{C})=0.6
\end{aligned}
$$

As a matrix this is:

$$
\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 \\
1 & 0 & 1 & 0 & 0.6
\end{array}\right]
$$

Solving this we get

$$
\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & \frac{1}{5} \\
0 & 1 & 0 & 0 & \frac{1}{5} \\
0 & 0 & 1 & 0 & \frac{2}{5} \\
0 & 0 & 0 & 1 & \frac{1}{5}
\end{array}\right]
$$

This means:

$$
\mathrm{P}(\mathrm{~A})=\frac{1}{5}, \mathrm{P}(\mathrm{~B})=\frac{1}{5}, \mathrm{P}(\mathrm{C})=\frac{2}{5}, P(D)=\frac{1}{5}
$$

